
6 Dynamic Programming

Dynamic programming can be thought of as an optimization technique for particular
classes of backtracking algorithms where subproblems are repeatedly solved. Note that the
term dynamic in dynamic programming should not be confused with dynamic programming
languages, like Scheme or Lisp. Nor should the term programming be confused with the act
of writing computer programs. In the context of algorithms, dynamic programming always
refers to the technique of filling in a table with values computed from other table values.
(It's dynamic because the values in the table are filled in by the algorithm based on other
values of the table, and it's programming in the sense of setting things in a table, like how
television programming is concerned with when to broadcast what shows.)

6.1 Fibonacci Numbers

Before presenting the dynamic programming technique, it will be useful to first show a
related technique, called memoization, on a toy example: The Fibonacci numbers. What
we want is a routine to compute the nth Fibonacci number:

// fib -- compute Fibonacci(n)
function fib(integer n): integer

By definition, the nth Fibonacci number, denoted Fn is

F0 = 0

F1 = 1

Fn = Fn−1 +Fn−2

How would one create a good algorithm for finding the nth Fibonacci-number? Let's begin
with the naive algorithm, which codes the mathematical definition:

// fib -- compute Fibonacci(n)
function fib(integer n): integer
assert (n >= 0)
if n == 0: return 0 fi
if n == 1: return 1 fi

49

Dynamic Programming

return fib(n - 1) + fib(n - 2)
end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Simple_Implementation

Note that this is a toy example because there is already a mathematically closed form for
Fn:

F (n) = φn− (1−φ)n√
5

where:

φ= 1 +
√

5
2

This latter equation is known as the Golden Ratio1. Thus, a program could efficiently
calculate Fn for even very large n. However, it's instructive to understand what's so
inefficient about the current algorithm.

To analyze the running time of fib we should look at a call tree for something even as small
as the sixth Fibonacci number:

Figure 5

Every leaf of the call tree has the value 0 or 1, and the sum of these values is the final result.
So, for any n, the number of leaves in the call tree is actually Fn itself! The closed form
thus tells us that the number of leaves in fib(n) is approximately equal to

(
1 +
√

5
2

)n
≈ 1.618n = 2lg(1.618n) = 2n lg(1.618) ≈ 20.69n.

1 http://en.wikipedia.org/wiki/golden_ratio

50

http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Simple_Implementation
http://en.wikipedia.org/wiki/golden_ratio

Fibonacci Numbers

(Note the algebraic manipulation used above to make the base of the exponent the number
2.) This means that there are far too many leaves, particularly considering the repeated
patterns found in the call tree above.

One optimization we can make is to save a result in a table once it's already been computed,
so that the same result needs to be computed only once. The optimization process is called
memoization and conforms to the following methodology:

Memoization Methodology
Start with a backtracking algorithm# Look up the problem in a table; if there's a
valid entry for it, return that value# Otherwise, compute the problem recursively, and
then store the result in the table before returning the value

Consider the solution presented in the backtracking chapter for the Longest Common
Subsequence problem. In the execution of that algorithm, many common subproblems were
computed repeatedly. As an optimization, we can compute these subproblems once and
then store the result to read back later. A recursive memoization algorithm can be turned
"bottom-up" into an iterative algorithm that fills in a table of solutions to subproblems.
Some of the subproblems solved might not be needed by the end result (and that is where
dynamic programming differs from memoization), but dynamic programming can be very
efficient because the iterative version can better use the cache and have less call overhead.
Asymptotically, dynamic programming and memoization have the same complexity.

So how would a fibonacci program using memoization work? Consider the following program
(f[n] contains the nth Fibonacci-number if has been calculated, -1 otherwise):

function fib(integer n): integer
if n == 0 or n == 1:
return n

else-if f[n] != -1:
return f[n]

else
f[n] = fib(n - 1) + fib(n - 2)
return f[n]

fi
end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Cached_Implementation

The code should be pretty obvious. If the value of fib(n) already has been calculated it's
stored in f[n] and then returned instead of calculating it again. That means all the copies of
the sub-call trees are removed from the calculation.

51

http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Cached_Implementation

Dynamic Programming

Figure 6

The values in the blue boxes are values that already have been calculated and the calls can
thus be skipped. It is thus a lot faster than the straight-forward recursive algorithm. Since
every value less than n is calculated once, and only once, the first time you execute it, the
asymptotic running time is O(n). Any other calls to it will take O(1) since the values have
been precalculated (assuming each subsequent call's argument is less than n).

The algorithm does consume a lot of memory. When we calculate fib(n), the values
fib(0) to fib(n) are stored in main memory. Can this be improved? Yes it can, al-
though the O(1) running time of subsequent calls are obviously lost since the values
aren't stored. Since the value of fib(n) only depends on fib(n-1) and fib(n-2) we
can discard the other values by going bottom-up. If we want to calculate fib(n), we
first calculate fib(2) = fib(0) + fib(1). Then we can calculate fib(3) by adding fib(1)
and fib(2). After that, fib(0) and fib(1) can be discarded, since we don't need them
to calculate any more values. From fib(2) and fib(3) we calculate fib(4) and discard
fib(2), then we calculate fib(5) and discard fib(3), etc. etc. The code goes something like this:

function fib(integer n): integer
if n == 0 or n == 1:
return n

fi

let u := 0
let v := 1

for i := 2 to n:
let t := u + v
u := v
v := t

repeat

return v
end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Memory_Optimized_
Implementation

52

http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Memory_Optimized_Implementation
http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Memory_Optimized_Implementation

Longest Common Subsequence (DP version)

We can modify the code to store the values in an array for subsequent calls, but the point is
that we don't have to. This method is typical for dynamic programming. First we identify
what subproblems need to be solved in order to solve the entire problem, and then we
calculate the values bottom-up using an iterative process.

6.2 Longest Common Subsequence (DP version)

This will remind us of the backtracking version and then improve it via memoization. Finally,
the recursive algorithm will be made iterative and be full-fledged DP. [TODO: write this
section]

6.3 Matrix Chain Multiplication

Suppose that you need to multiply a series of n matrices M1, . . . ,Mn together to form a
product matrix P :

P =M1 ·M2 · · ·Mn−1 ·Mn

This will require n−1 multiplications, but what is the fastest way we can form this product?
Matrix multiplication is associative, that is,

(A ·B) ·C =A · (B ·C)

for any A,B,C, and so we have some choice in what multiplication we perform first. (Note
that matrix multiplication is not commutative, that is, it does not hold in general that
A ·B =B ·A.)

Because you can only multiply two matrices at a time the product M1 ·M2 ·M3 ·M4 can be
paranthesized in these ways:

((M1M2)M3)M4

(M1(M2M3))M4

M1((M2M3)M4)

(M1M2)(M3M4)

M1(M2(M3M4))

53

Dynamic Programming

Two matrices M1 and M2 can be multiplied if the number of columns in M1 equals the
number of rows in M2. The number of rows in their product will equal the number rows
in M1 and the number of columns will equal the number of columns in M2. That is, if the
dimensions of M1 is a× b and M2 has dimensions b× c their product will have dimensions
a× c.

To multiply two matrices with each other we use a function called matrix-multiply that
takes two matrices and returns their product. We will leave implementation of this function
alone for the moment as it is not the focus of this chapter (how to multiply two matrices in
the fastest way has been under intensive study for several years [TODO: propose this topic
for the Advanced book]). The time this function takes to multiply two matrices of size a× b
and b× c is proportional to the number of scalar multiplications, which is proportional to
abc. Thus, paranthezation matters: Say that we have three matrices M1, M2 and M3. M1
has dimensions 5×100, M2 has dimensions 100×100 and M3 has dimensions 100×50. Let's
paranthezise them in the two possible ways and see which way requires the least amount of
multiplications. The two ways are

((M1M2)M3), and

(M1(M2M3)).

To form the product in the first way requires 75000 scalar multiplications (5*100*100=50000
to form product (M1M2) and another 5*100*50=25000 for the last multiplications.) This
might seem like a lot, but in comparison to the 525000 scalar multiplications required by the
second parenthesization (50*100*100=500000 plus 5*50*100=25000) it is miniscule! You
can see why determining the parenthesization is important: imagine what would happen if
we needed to multiply 50 matrices!

6.3.1 Forming a Recursive Solution

Note that we concentrate on finding a how many scalar multiplications are needed instead
of the actual order. This is because once we have found a working algorithm to find the
amount it is trivial to create an algorithm for the actual parenthesization. It will, however,
be discussed in the end.

So how would an algorithm for the optimum parenthesization look? By the chapter
title you might expect that a dynamic programming method is in order (not to give the
answer away or anything). So how would a dynamic programming method work? Because
dynamic programming algorithms are based on optimal substructure, what would the optimal
substructure in this problem be?

Suppose that the optimal way to parenthesize

M1M2 . . .Mn

splits the product at k:

(M1M2 . . .Mk)(Mk+1Mk+2 . . .Mn)

54

Matrix Chain Multiplication

Then the optimal solution contains the optimal solutions to the two subproblems

(M1 . . .Mk)

(Mk+1 . . .Mn)

That is, just in accordance with the fundamental principle of dynamic programming, the
solution to the problem depends on the solution of smaller sub-problems.

Let's say that it takes c(n) scalar multiplications to multiply matrices Mn and Mn+1, and
f(m,n) is the number of scalar multiplications to be performed in an optimal parenthesization
of the matrices Mm . . .Mn. The definition of f(m,n) is the first step toward a solution.

When n−m = 1, the formulation is trivial; it is just c(m). But what is it when the
distance is larger? Using the observation above, we can derive a formulation. Sup-
pose an optimal solution to the problem divides the matrices at matrices k and k+1
(i.e. (Mm . . .Mk)(Mk+1 . . .Mn)) then the number of scalar multiplications are.

f(m,k) +f(k+ 1,n) + c(k)

That is, the amount of time to form the first product, the amount of time it takes to form
the second product, and the amount of time it takes to multiply them together. But what
is this optimal value k? The answer is, of course, the value that makes the above formula
assume its minimum value. We can thus form the complete definition for the function:

f(m,n) =
{

minm≤k<n f(m,k) +f(k+ 1,n) + c(k) if n−m> 1
0 if n=m

A straight-forward recursive solution to this would look something like this (the language is
Wikicode2):

function f(m, n) {

if m == n
return 0

let minCost := ∞

for k := m to n - 1 {
v := f(m, k) + f(k + 1, n) + c(k)
if v < minCost

minCost := v
}
return minCost

}

2 http://en.wikipedia.org/wiki/Wikipedia:Wikicode

55

http://en.wikipedia.org/wiki/Wikipedia:Wikicode

Dynamic Programming

This rather simple solution is, unfortunately, not a very good one. It spends mountains of
time recomputing data and its running time is exponential.

Using the same adaptation as above we get:

function f(m, n) {

if m == n
return 0

else-if f[m,n] != -1:
return f[m,n]

fi

let minCost := ∞

for k := m to n - 1 {
v := f(m, k) + f(k + 1, n) + c(k)
if v < minCost

minCost := v
}
f[m,n]=minCost
return minCost

}

6.4 Parsing Any Context-Free Grammar

Note that special types of context-free grammars can be parsed much more efficiently than
this technique, but in terms of generality, the DP method is the only way to go.

56

